
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 7, JULY 2001 1355

Fig. 9. Drain–source resistance for 100-�m devices composed of 1–4 fingers.

off (as in Fig. 3) as a function of ambient temperature. This enables
the dependency of the dispersion effect on ambient temperature to be
determined over a wide temperature range without the complications
introduced by the static bias. The results of this are summarized in
Fig. 8, which shows the drain–source resistance before (at 10 Hz)
and after (at 1 kHz) the frequency-disperison effect. This data was
measured from the static point ofVGS = 0 V, VDS = 0 V by
pulsing the drain terminal only and corresponds to thevgs = 0 V,
vds = 2 V dynamic point. The corresponding information for smaller
devices is shown in Fig. 9 to illustrate the fact that under high- and
low-temperature conditions, the device becomes free of the dispersion
effect. This occurs because of the change in the Fermi level as the
temperature is varied. This facilitates the release of electrons from the
traps under high-temperature conditions and exhibits the process as the
temperature and the Fermi level is lowered. The information in Fig. 9
clearly shows the significant effect that the number of fingers has on
the thermal and dispersion characteristics of the device. The thermal
impedance for the one-finger device was measured as 270�C/W,
whereas for the four-finger device, the value is 333�C/W.

VII. CONCLUSIONS

A measurement system for quantifying the dependency of the fre-
quency-disperison effect on electric field and temperature has been pre-
sented. This uses a pulsedIV measurement system and a thermally
controlled wafer prober. The pulsed measurements can be performed
by pulsing either the gate or drain or both terminals. The results pre-
sented indicate that the differences observed between the static and dy-
namic characteristics are to a significant extent due to frequency-dis-
perison effects.

PulsedIV measurements carried out in conjunction with liquid crys-
tals show that a relatively long pulsewidth (approximately 10 ms) is re-
quired before the self-heating effect has a measurable effect on theIV

characteristics of a medium-size power transistor.

REFERENCES

[1] J. Rodriguez-Tellez, B. P. Stothard, and M. Al-Daas, “Static, pulsed
and frequency-dependentIV characteristics of GaAs FETs,”Proc. Inst.
Elect. Eng., pt. G, vol. 143, pp. 129–133, June 1996.

[2] , “Frequency and temperature dependency of output conductance
of GaAs FETs,”Microwave J., vol. 38, no. 8, pp. 88–94, Aug. 1995.

[3] J. M. Golio, M. G. Miller, G. N. Maracas, and D. A. Johnson, “Fre-
quency-dependent electrical characteristics of GaAs MESFETs,”IEEE
Trans. Electron Devices, vol. 37, pp. 1217–1227, May 1990.

[4] T. Fernandez, Y. Newport, J. M. Zamarillo, A. Mediavilla, and A. Tazon,
“High-speed automated pulsedIV measurement system,” in23rd Eu-
ropean Microwave Conf., Madrid, Spain, Sept. 1993, pp. 494–496.

[5] J. Rodriguez-Tellez, S. Laredo, and R. W. Clarke, “Self-heating in GaAs
FETs—A problem?,”Microwave J., vol. 37, no. 9, pp. 76–92, Sept.
1994.

[6] J. A. Higgins, “Thermal properties of power HBTs,”IEEE Trans. Elec-
tron Devices, vol. 40, pp. 2171–2177, Dec. 1993.

[7] J. P. Teyssier, P. Bouysse, Z. Ouarch, D. Barataud, T. Peyretaillade, and
R. Quere, “40-GHz/150-ns versatile pulsed measurement system for mi-
crowave transistor isothermal characterization,”IEEE Trans. Microwave
Theory Tech., vol. 46, pp. 2043–2052, Dec. 1998.

[8] A. E. Parker and J. B. Scott, “Method for determining correct timing
for pulsedI/V measurement of GaAs FETs,”Electron. Lett., vol. 31, pp.
1697–1698, Sept. 1995.

Numerical Investigation of the Field and Current Behavior
Near Lossy Edges

Marco Farina and Tullio Rozzi

Abstract—Real circuits involve metallic edges with finite conductivity
and nonideal dielectrics. Usually it is more or less implicitly assumed that
fields and induced currents behave as if conductors and dielectrics were
ideal. In this paper, we show that this assumption is partially erroneous
and that the presence of real conductors and dielectrics seems to lead to a
simpler and more physical picture, where longitudinal currents are shown
to be nonsingular.

Index Terms—Coplanar waveguides, lossy circuits, Maxwell’s equations,
numerical analysis, wedges.

I. INTRODUCTION

Wedges are sometimes more than a purely academic concern, as re-
cently shown by several authors. In fact, while on the one hand, the
knowledge of the field behavior near wedges may be useda posteriori
in order to check the consistency of numerical solutions, it may be also
introduceda priori in the numerical solution of integral equations in
order to speed up its rate of convergence [1], [2].

Sharp edges are frequently encountered in practice, and, as their
sharpness is assumed to be infinite, they may induce singularities in
fields and source densities. If, from a theoretical point-of-view, the cor-
rect singularity conditions are needed in order to ensure the unique-
ness of the field solution [3], in many practical cases, it is just suf-
ficient to have an estimate of the field behavior in order to substan-
tially increase the speed and accuracy of numerical algorithms. This
is particularly true when dealing with massively numerical techniques,
such as finite differences (FDs) or transmission line methods (TLMs),
where the whole space of the analyzed structure has to be cleverly dis-
cretized. In these methods, sharp variations in the field would require
either great over-meshing or a more expedient inclusionab initio of the
known field behavior in the formulation itself. The latter strand is very
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Fig. 1. Nonideal dielectric wedge, infinite in thez-direction.

attractive, as it allows obtaining greater accuracy without paying for ad-
ditional computational load, and has been successfully followed both
for the finite-difference time-domain (FDTD) [4]–[7] and the TLM [8]
approaches.

There is a wealth of references concerning singularity conditions in
proximity of ideal dielectric and ideal conducting wedges; a long list
may be found in [1], [2]. Nonetheless, just a few papers addressed the
topic of the field behavior near nonideal edges, e.g., [9] and [10].

The aim of this paper is to provide a full-wave numerical investi-
gation of the field behavior near the edges in “real” structures, con-
sidering, in particular, a conductor-backed coplanar waveguide (CPW)
and a microstrip with lossy thick conductors. Nevertheless, an attempt
is also made to draw some analytical conclusions by inspection of
Maxwell’s equations.

II. THEORY—2-D EDGES

It is possible to get some theoretical insights about the field behavior
near lossy conductors in the particular case of a two-dimensional (2-D)
edge, by retracing the line of reasoning usually followed when treating
dielectric wedges [11], but considering now a complex permittivity.

To this aim, let us consider Fig. 1, which shows a wedge between two
linear, isotropic, and homogeneous media: the edge is “sharp,” having
a zero radius of curvature, and infinite in thez-direction.

Fields are expressed by using Hertzian potentials in a cylindrical co-
ordinate system. Assumingz-oriented electric and magnetic potentials,
one obtains

Ez =!
2�"0�(!) e

Hz =!
2�"0� (!) h

Er =�j
!�

r
@# h

Hr = j
!"0�(!)

r
@# e

E# = j!�@r h

H# =�j!"0� (!)@r e: (1)

In the above expressions, we have focused waves uniform in just the
z-direction. This assumption allows to set to zero allz-derivatives, thus
reducing the general problem to a 2-D one. Note that, due to the 2-D
assumption, none of the fields in (1) involvesE andH potentials at the
same time: the fields originated are purely TM and TE, and TM and TE
fields may be considered separately.

Both potentials have to satisfy the Helmholtz equation in each re-
gion, namely,

r
2 + k2 = 0: (2)

Near the edges, however, the condition holds

r
2
� k2 (3)

namely, the spatial variations are sharper than the frequency ones. This
noteworthy property allows approximating the potentials by the solu-
tions of Laplace’s equation that are the quasi-static solutions.

One should bear in mind, however, that, in the lossy case, frequency
plays an important role anyway, by determining to what extent the ma-
terial behaves as a dielectric or conductor; hence, all the quantities in-
volved are frequency dependent, while satisfying the Laplace equation.

Hence, the possible solutions are
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where the apex refers to the region, whileA andB are unknown co-
efficients. In our case,� is generally complex, and just its real part
contributes to the singularity.

Tangential field continuity must be ensured at each interface so that
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for arbitraryr. The above set of conditions leads to a homogeneous
system. Seeking for nontrivial solutions of the determinants

�h(�) = 2�1�2 1� cos(��0) cos �(�0 � 2�)

� �21 + �22 sin(��0) sin �(�0 � 2�)

= 0

�e(�) = 2�1�2 1� cos(��0) cos �(�0 � 2�)

� (�21 + �22) sin(��0) sin �(�0 � 2�)

= 0 (6)

for TE and TM waves, respectively, the lowest order zero will provide
the order of singularity wheneverRe(v) ranges from zero to one. What
is apparent is that the TM wave condition does not involve permit-
tivity or conductivity. Field componentsHr andH� are singular only
if �1 6= �2 and regular for dielectric or nonideal conductor wedges. On
the other hand, the tangential magnetic field is discontinuous at ideal
conductors, and condition (5) must be replaced by

E(2)
z (2�; r) = E(2)

z (�0; r) = 0 (7)

obtaining for both TM and TE waves the well-known condition

� = �=(2�� �0): (8)

Hence, TM fields are singular just near ideal conductors and mag-
netic wedges, being regular in all other cases.
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Fig. 2. Behavior ofRe(�) versus the wedge conductivity for TE fields for
some angles. Dashed lines represent the ideal conductor case." = 12:9,
" = 1, f = 1 GHz. Dotted lines represent the expected values for the ideal
dielectric wedge.

On the other hand, TE fields have a smoother transition from the
regular to singular condition as the conductivity is raised, and is
shown in Fig. 2, where the real part of� smoothly approaches the
value expected for an ideal conductor. Fig. 3 represents the behavior
of � when both permittivity and conductivity are varied for an edge
angle of�=10.

III. T HEORY–3-D EDGES

The conclusions drawn in the previous section are strictly related
to the 2-D assumption. In the general three-dimensional (3-D) case,
wheneverz-derivatives are not negligible, it is hard to draw analytical
conclusions. Nevertheless, according to numerical simulations, some
of which are reported in the following section, both magnetic- and
electric-field components normal to the edge seem to be singular.
This is inconsistent with the conclusion drawn for 2-D edges, where
magnetic fields orthogonal to the edge just belong to TM waves and
are regular. This is due to the particular decomposition in TM–TE
fields occurring in the 2-D case. In general, TM and TE waves have
five components of field (both have nonvanishingH� andHr), and
usually a singular transverse electric field would imply a singular
transverse magnetic field.

In fact, if thez-derivative is not set to zero, we pose simply
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and (1) is replaced by
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Fig. 3. Behavior ofRe(�) in TE fields for varying both" and� assuming
� = �=10.

for TE fields and
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for TM fields. Hence, we see, for example, that wheneverEr of a TE
field is singular,H� ought to show the same kind of singularity, and
the same kind of relationship occurs betweenE� andHr.

This speculative reasoning does not provide us with the order of sin-
gularity; however, it gives us insight as to what to expect. As for the 2-D
TE case, we expect fields near lossy conductors to behave as in prox-
imity of ideal conductors for any reasonable conductivity value. An
important question may be raised about the apparent discontinuity be-
tween conclusions obtained when@z is or is not vanishing. Actually, we
expect a continuous dependence of the order of singularity of the mag-
netic fields from@z , smoothly approaching unity value for@z ! 0, in
a very similar way as shown in Fig. 3, where a smooth transition does
exist when varying conductivity. A similar line of reasoning applies
for the dependence by the frequency, involving a continuous transition
from the dynamic to the static case.

IV. THEORY—CURRENTS

Lossy conductors may be seen just as lossy dielectrics: this obvious
point-of-view leads to an interesting implication. In fact, a noteworthy
property of dielectric wedges is that, unlike perfect conductors, both
concave and convex edges induce field singularities. This fact is also
verified by solving (6) with�0 > �. However, the conductor (volume)
currents are linked to the electric field by Ohm’s law, stated propor-
tionality between induced currents and electric fields, so thatJx and
Jy have be singular andJz has to be regular. This is a very different
situation from that of an ideal conductor, whereJx andJy (now sur-
face current densities) are vanishing at the corner, whileJz is singular,
and linked to the singularity of the magnetic-field components.

V. NUMERICAL RESULTS

In order to investigate numerically the field behavior near some
planar structures, we have used an integral-equation approach, namely,
the generalized transverse resonance-diffraction (GTRD) approach,
which is extensively discussed in [12] and [13]. Fig. 4 depicts the
behavior of the electric fields at the dielectric interface of a boxed
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Fig. 4. Behavior ofE on the dielectric interface of a boxed microstrip. The
microstrip is 70-�m wide and 3-�m thick on a 112-�m GaAs substrate. The
strip conductivity is 3 10 S/m.

Fig. 5. Contour plot of the magnitude ofH near electrodes of a conductor-
backed CPW (dimensions not scaled).

microstrip of finite thickness and conductivity. Thex-component
outside the conductor (jxj > 35 �m) seems to follow the singular
behavior expected for a perfect conductor quite well. Ripples at the
conducting interface are caused by the shape and finite number of
functions used to describe the conductor currents.

Fig. 5 shows the behavior ofHy in proximity of the conductors of
a conductor-backed CPW for the fundamental even mode. While nu-
merical results cannot be used to assess any singularity, it appears that
Hy has at least a maximum near the edge of the conductors.

Longitudinal currents obtained from the integral equation for a lossy
microstrip [14] seems to support our theory about currents. In fact,
Jz follows a parabolic behavior that is extremely frequency dependent
being produced by the skin effect, as it disappears at low frequencies.
This is consistent with the behavior observed forEz . On the other hand,
bothJx andJy do not ever vanish at the corners, which is consistent
with the present theory.

Using a singular shape for the dominant current component,Jz gen-
erally does not produce dramatic errors in an integral approach like
ours (shown in Fig. 6), where a comparison of the loss factor for a mi-
crostrip is evaluated using a single constant function, a classicalx0:5

singular function, and a piecewise constant (PWC) function; namely,
a set of six subsectional constant functions. BothJx andJy, having a
reduced impact in the simulation, are a PWC.

The computation is appositely performed at low frequencies in order
to avoid the skin effect along the thickness of the strip. Using the sin-
gular function results in a shifted-up curve with respect to those ob-
tained by a constant function, while the PWC expansion, being able

Fig. 6. Loss factor evaluated for three expanding sets of the integral equation.
The microstrip is 1-mm wide and 1-�m thick. The substrate is 2-mm GaAs.

to accommodate the right frequency-dependent shape of the current,
correctly models the loss factor (several validations of this set against
measured data are collected in [13]). Note that, in the lower frequency
range, results obtained by the PWC come close to the ones obtained by
a single constant function. The upward shift induced by the assumed
singular shape produces a consistent systematic error when a whole set
of singular expanding functions is used.
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