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Fig. 9. Drain—source resistance for 101 devices composed of 1-4 fingers.

Numerical Investigation of the Field and Current Behavior

off (as in Fig. 3) as a function of ambient temperature. This enables Near Lossy Edges
the dependency of the dispersion effect on ambient temperature to be
determined over a wide temperature range without the complications Marco Farina and Tullio Rozzi

introduced by the static bias. The results of this are summarized in
Fig. 8, which shows the drain—source resistance before (at 10 Hz)

and after (at 1 kHz) the frequency-disperison effect. This data wasAbstract—Real circuits involve metallic edges with finite conductivity
measured from the static point f:s = 0V, Vbs = 0 V by and nonideal dielectrics. Usually it is more or less implicitly assumed that

lsing the drai inal onl d d the — 0V fields and induced currents behave as if conductors and dielectrics were
pulsing the drain terminal only and corresponds to ¢he = 0V, ideal. In this paper, we show that this assumption is partially erroneous

vgs = 2 V dynamic point. The corresponding information for smalleand that the presence of real conductors and dielectrics seems to lead to a
devices is shown in Fig. 9 to illustrate the fact that under high- arsimpler and more physical picture, where longitudinal currents are shown
low-temperature conditions, the device becomes free of the dispersidRe nonsingular.

effect. This occurs because of the change in the Fermi level as thendex Terms—Coplanar waveguides, lossy circuits, Maxwell's equations,
temperature is varied. This facilitates the release of electrons from themerical analysis, wedges.

traps under high-temperature conditions and exhibits the process as the
temperature and the Fermi level is lowered. The information in Fig. 9
clearly shows the significant effect that the number of fingers has on
the thermal and dispersion characteristics of the device. The thermalWedges are sometimes more than a purely academic concern, as re-
impedance for the one-finger device was measured as°€M0/, cently shown by several authors. In fact, while on the one hand, the
whereas for the four-finger device, the value is 383W. knowledge of the field behavior near wedges may be ageasteriori

in order to check the consistency of numerical solutions, it may be also
introduceda priori in the numerical solution of integral equations in
order to speed up its rate of convergence [1], [2].

A measurement system for quantifying the dependency of the fre-Sharp edges are frequently encountered in practice, and, as their
quency-disperison effect on electric field and temperature has been giigarpness is assumed to be infinite, they may induce singularities in
sented. This uses a pulséd” measurement system and a thermallfields and source densities. If, from a theoretical point-of-view, the cor-
controlled wafer prober. The pulsed measurements can be perforrpggt singularity conditions are needed in order to ensure the unique-
by pulsing either the gate or drain or both terminals. The results piigass of the field solution [3], in many practical cases, it is just suf-
sented indicate that the differences observed between the static andidient to have an estimate of the field behavior in order to substan-
namic characteristics are to a significant extent due to frequency-digdly increase the speed and accuracy of numerical algorithms. This
perison effects. is particularly true when dealing with massively numerical techniques,

Pulsed’ V" measurements carried out in conjunction with liquid cryssuch as finite differences (FDs) or transmission line methods (TLMs),
tals show that a relatively long pulsewidth (approximately 10 ms) is rgrhere the whole space of the analyzed structure has to be cleverly dis-
quired before the self-heating effect has a measurable effect divthe cretized. In these methods, sharp variations in the field would require
characteristics of a medium-size power transistor. either great over-meshing or a more expedient incluatpimitio of the

known field behavior in the formulation itself. The latter strand is very

|. INTRODUCTION

VIl. CONCLUSIONS
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namely, the spatial variations are sharper than the frequency ones. This
noteworthy property allows approximating the potentials by the solu-
tions of Laplace’s equation that are the quasi-static solutions.

One should bear in mind, however, that, in the lossy case, frequency
£, 1,50, plays an important role anyway, by determining to what extent the ma-
terial behaves as a dielectric or conductor; hence, all the quantities in-
z x volved are frequency dependent, while satisfying the Laplace equation.
Hence, the possible solutions are

Fig. 1. Nonideal dielectric wedge, infinite in thedirection.
1;',18‘{ (¢, r)y=r" |:A(S)h sin(vd) + BS;L cos(uﬂ):|

attractive, as it allows obtaining greater accuracy without paying for ad-
ditional computational load, and has been successfully followed botj/)((g;l(q,’ r) =r" |:A'(32)h <in [u(# _ %)] + B cos [u(# ~ o) }
for the finite-difference time-domain (FDTD) [4]-[7]and the TLM [8] ' N
approaches. (4)

There is a wealth of references concerning singularity conditions in
proximity of ideal dielectric and ideal conducting wedges; a long listhere the apex refers to the region, whileand B are unknown co-
may be found in [1], [2]. Nonetheless, just a few papers addressed éiicients. In our casey is generally complex, and just its real part
topic of the field behavior near nonideal edges, e.g., [9] and [10]. contributes to the singularity.

The aim of this paper is to provide a full-wave numerical investi- Tangential field continuity must be ensured at each interface so that
gation of the field behavior near the edges in “real” structures, con-

[

sidering, in particular, a conductor-backed coplanar waveguide (CPW) ESM0, r) =B (27, r)
and a microstrip with lossy thick conductors. Nevertheless, an attempt B0, r) = E® (27, 7)
is also made to draw some analytical conclusions by inspection of
Maxwell's equations. H(0,r)=HP (27, r)
HV(0, r) =HP (27, r)
Il. THEORY—2-D EDGES ED (b0, r) = E (b0, r)
Itis possible to get some theoretical insights about the field behavior EM (60, r) = E? (60, 1)
near lossy conductors in the particular case of a two-dimensional (2-D) )
edge, by retracing the line of reasoning usually followed when treating H,—El)(d)oa r)= ng)(éoa r)
dielectric wedges [11], but considering now a complex permittivity. H,(,l)(g/)o, r) = H}?)(@U, ) (5)

To this aim, let us consider Fig. 1, which shows a wedge between two
linear, isotropic, and homogeneous media: the edge is “sharp,” havfog arbitrary ». The above set of conditions leads to a homogeneous
a zero radius of curvature, and infinite in thelirection. system. Seeking for nontrivial solutions of the determinants

Fields are expressed by using Hertzian potentials in a cylindrical co-
ordinate system. Assumingoriented electric and magnetic potentials,

- Ap(v) = 26162 |1 — cos(vgy) cos (y(@o - 271'))
one obtains ~

— (raf + r;é) |:sin(1/(bo) sin (u(@o - 27T)):|
=0

E. = peos (w)ye

H. = wZMSOR (w) U,

E,. = —‘;’ﬂ 0o A (V) = 2u1p0 {1 — cos(v¢o) cos (y(éo — 2@)}
”
H :]’M%we — (i + p3) {Sin(”éﬁ’o) sin (V(éo - 27r)>}
Ey = juudi iy =0 ©)
Hy = —jweok (w) Orthe. 1)

for TE and TM waves, respectively, the lowest order zero will provide
{ng order of singularity whenev&e(v) ranges from zero to one. What
IS apparent is that the TM wave condition does not involve permit-
2’[_i}ﬂ'ty or conductivity. Field component!,. andH, are singular only
if 11 # po and regular for dielectric or nonideal conductor wedges. On
.|1Ee other hand, the tangential magnetic field is discontinuous at ideal
conductors, and condition (5) must be replaced by

In the above expressions, we have focused waves uniform in just
z-direction. This assumption allows to set to zerc-adlerivatives, thus
reducing the general problem to a 2-D one. Note that, due to the
assumption, none of the fields in (1) involvEsandH potentials at the
same time: the fields originated are purely TM and TE, and TM and
fields may be considered separately.

Both potentials have to satisfy the Helmholtz equation in each re-

(2) /- _ (2) —
gion, namely, B (2m, r) = B2 (90, 1) =0 (7)

5 5 obtaining for both TM and TE waves the well-known condition
\Va v+ kv = 0. (2)

y v = /(2w — do). ®)
Near the edges, however, the condition holds

Hence, TM fields are singular just near ideal conductors and mag-
V> (3) netic wedges, being regular in all other cases.
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Fig. 2. Behavior ofRe(r) versus the wedge conductivity for TE fields for weok(:
some angles. Dashed lines represent the ideal conductorsgases 12.9, H, :]’L““J) Dy e

e = 1, f = 1 GHz. Dotted lines represent the expected values for the ideal
dielectric wedge. 0t
Ey =—j—=<

»

Hy = —jweor(w)dyide (10)

On the other hand, TE fields have a smoother transition from the

regular to singular condition as the conductivity is raised, and f-(s)r TM fields. Hence, we see, for example, that wheneWenof a TE

shown in Fig. 2, where the real part of smoothly approaches the . .~ . - .
value expected for an ideal conductor. Fig. 3 represents the behaﬂ%lrd Is singular,Hy ought to show the same kind of singularity, and

of v when both permittivity and conductivity are varied for an edge © same kind O.f relatlonsh|p oceurs betwé__é;nandH_,.. .
angle of /10. This speculative reasoning does not provide us with the order of sin-

gularity; however, it gives us insight as to what to expect. As for the 2-D

TE case, we expect fields near lossy conductors to behave as in prox-
lll. THEORY-3-D EDGES imity of ideal conductors for any reasonable conductivity value. An
ngortant guestion may be raised about the apparent discontinuity be-

to the 2-D assumption. In the general three-dimensional (3-D) Ca&vgeen conclu_sions obtained whanis oris notvanishing. A(_:tually, we
wheneverz-derivatives are not negligible, it is hard to draw analytica?)(p.e(;_t Zli dcoptlrr:%ous depetzaldence of tr;? OrdeTtOf sungu}lgrlty o{)the mag-
conclusions. Nevertheless, according to numerical simulations, sopr%'c el S‘I rome., smc;\o ygplp:)_roas(): 'nr? unity va ueth f ~ 't" n d

of which are reported in the following section, both magnetic- ang VETY simiiar way as shown In Fig. 3, where a Smooth transition coes
electric-field components normal to the edge seem to be singul >|$.'St when varying conductivity. A S"T“'ar ||_ne of reasoning appll_e_s
This is inconsistent with the conclusion drawn for 2-D edges, whe o the depende_nce by the frt_aquency, involving a continuous transition
magnetic fields orthogonal to the edge just belong to TM waves al gm the dynamic to the static case.

are regular. This is due to the particular decomposition in TM-TE

fields occurring in the 2-D case. In general, TM and TE waves have IV. THEORY—CURRENTS

five components of field (both have nonvanishiflg and 11,), and  ossy conductors may be seen just as lossy dielectrics: this obvious
usually a singular transverse electric field would imply a singulgjoint-of-view leads to an interesting implication. In fact, a noteworthy

The conclusions drawn in the previous section are strictly relat

transverse magnetic field. property of dielectric wedges is that, unlike perfect conductors, both
In fact, if the z-derivative is not set to zero, we pose simply concave and convex edges induce field singularities. This fact is also
verified by solving (6) withp, > 7. However, the conductorélume
9. =—jf currents are linked to the electric field by Ohm’s law, stated propor-

tionality between induced currents and electric fields, so fhaand
J, have be singular and. has to be regular. This is a very different
situation from that of an ideal conductor, whefg and.J, (now sur-
face current densities) are vanishing at the corner, whilis singular,
E.=0 and linked to the singularity of the magnetic-field components.

H. = (wzufon(w) — /32)74;,1

and (1) is replaced by

w V. NUMERICAL RESULTS
B, =—i*E o0,
r In order to investigate numerically the field behavior near some

Hy ==jB0rn planar structures, we have used an integral-equation approach, namely,
the generalized transverse resonance-diffraction (GTRD) approach,
which is extensively discussed in [12] and [13]. Fig. 4 depicts the

(9)  behavior of the electric fields at the dielectric interface of a boxed

Ey = jupdry

Hy = —jp2een




1358 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 7, JULY 2001
140.00 T T T T
120.00
Mag(Ex)
ArY! 0.0028 [—
100.00 E
g
<]
80.00 0.0026 |-
60.00 A
0.0024 —
40.00 Constant
20.00
0.0022 L L L L
0 20 40 60 80 100
0.00 Frequency [MHz]
-100 -80 -60 -40 -20 0 20 40 80 80 10C

Fig. 6. Loss factor evaluated for three expanding sets of the integral equation.

Fig. 4. Behavior ofE, on the dielectric interface of a boxed microstrip. Thel.he microstrip is 1-mm wide and & thick. The substrate is 2-mm GaAs

microstrip is 70xm wide and 3zm thick on a 112«m GaAs substrate. The
strip conductivity is 3 10 S/m.

to accommodate the right frequency-dependent shape of the current,
correctly models the loss factor (several validations of this set against
measured data are collected in [13]). Note that, in the lower frequency
range, results obtained by the PWC come close to the ones obtained by
a single constant function. The upward shift induced by the assumed
singular shape produces a consistent systematic error when a whole set

(1]
Fig. 5. Contour plot of the magnitude &f, near electrodes of a conductor-
backed CPW (dimensions not scaled). [2]
microstrip of finite thickness and conductivity. The-component 3]

(4]

outside the conductot«| > 35 p;m) seems to follow the singular
behavior expected for a perfect conductor quite well. Ripples at the
conducting interface are caused by the shape and finite number ofs)
functions used to describe the conductor currents.

Fig. 5 shows the behavior @, in proximity of the conductors of
a conductor-backed CPW for the fundamental even mode. While nu-[6]
merical results cannot be used to assess any singularity, it appears that
H, has at least a maximum near the edge of the conductors. [71

Longitudinal currents obtained from the integral equation for a lossy
microstrip [14] seems to support our theory about currents. In fact, (8]
J. follows a parabolic behavior that is extremely frequency dependent
being produced by the skin effect, as it disappears at low frequencies.

This is consistent with the behavior observedior On the other hand,  [9]
both.J,. and.J, do not ever vanish at the corners, which is consistent
with the present theory. [10]

Using a singular shape for the dominant current componergen-
erally does not produce dramatic errors in an integral approach like
ours (shown in Fig. 6), where a comparison of the loss factor for a mi{11]
crostrip is evaluated using a single constant function, a classical
singular function, and a piecewise constant (PWC) function; namely[,lz]
a set of six subsectional constant functions. Béthand.J,, having a
reduced impact in the simulation, are a PWC.

The computation is appositely performed at low frequencies in ordel!3]
to avoid the skin effect along the thickness of the strip. Using the sin-14]
gular function results in a shifted-up curve with respect to those ob-
tained by a constant function, while the PWC expansion, being able

of singular expanding functions is used.
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